References

CROMER, D. T. & OLSEN, C. E. (1959). Acta Cryst. 12. 689.

Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Borntraeger. SANDS, D. E., ZALKIN, A. & KKIKORIAN, O. H. (1959).
Acta Cryst. 12, 461.
VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.

VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 27 VOGEL, R. (1947). Metallforschung, 2, 97.

Acta Cryst. (1959). 12, 859

The Crystal Structure of ISbCl₈ and IAlCl₆

By C. G. VONK AND E. H. WIEBENGA

Laboratorium voor Anorganische en Fysische Chemie der Rijksuniversiteit, Groningen, The Netherlands

(Received 7 May 1959)

 $ISbCl_8$ crystallizes in the space group $P4_1$, with four units $ISbCl_8$ per cell. The coordinates of the Sb and I atoms were found from the [010] Patterson synthesis. Approximate coordinates of the chlorine atoms were obtained by the heavy-atom technique. The coordinates were refined by successive Fourier-syntheses of the [010] projection. The structure consists of ICl_2^+ and $SbCl_6^-$ ions, which are linked to chains by weak covalent bonds.

 $IAlCl_6$ crystallizes in the space group $P2_1$ with two units $IAlCl_6$ per cell. The positions of the I atoms were found from Patterson syntheses of the main projections. The positions of the Cl atoms were again determined by the heavy-atom method. This structure consists of chains in which ICl_2^+ and $AlCl_4^-$ ions alternate.

Introduction

Some interhalogen compounds react with metal chlorides to give ionic addition compounds. In the more familiar type of these compounds the interhalogen molecule is used in the formation of a negative ion, e.g. ICl_2^- , $IBrCl^-$, ICl_4^- , BrF_4^- , etc. Emeléus and his coworkers have shown that also complex positive ions (BrF_2^+, IF_4^+) can be derived from some of the interhalogens. Electrochemical experiments indicate for instance the existence of BrF_2^+ ions in $BrSbF_8$ (Woolf & Emeléus, 1949).

We found that ICl₃ reacts quite readily with SbCl₅ and AlCl₃ to give the compounds ISbCl₈ and IAlCl₆ respectively (Vonk, 1959). In view of the analogy between the formulae of BrSbF₈ and ISbCl₈ it seemed obvious to assume that ISbCl₈ is built up of ICl₂⁺ and SbCl₆⁻ ions. Some electrochemical experiments, in which POCl₃ and liquid SO₂ were used as solvents, were undertaken to verify this assumption. These experiments however failed because ISbCl₈ decomposes in both solvents. It was therefore decided to determine the structures of both ISbCl₈ and IAlCl₅ by X-ray diffraction.

ISbCl₈

This compound is obtained as red needle-like crystals when a hot solution of ICl_3 in SbCl₅ is allowed to cool to room temperature. It is also formed when Cl_2 gas is passed through a solution of ICl in SbCl₅.

 ISbCl_8 is rapidly attacked by moist air, while on

heating it decomposes at about 60 °C. into $SbCl_5$, ICl and Cl_2 . During the X-ray exposures the crystals were kept in thin-walled pyrex tubes.

The photographs showed tetragonal symmetry. Unit cell:

 $a=b=6.98\pm0.03, c=24.2\pm0.1$ Å.

Reflections 00*l* absent for $l \neq 4n$. Space group $P4_1$. Density, calculated from the unit-cell volume, assuming 4 ISbCl₈ units per cell: 3.00 g.cm.⁻³. Observed density $3.0(\pm 0.2)$ g.cm.⁻³. Crystal habit: Rapidly grown crystals are needle-like along [001] and show the forms {100}, {001} and {101}. Slowly grown crystals may also show the forms {102}, {103} and {104}.

Intensities

The intensities of 68 reflections hk0 and 161 reflections h0l were obtained from integrated and nonintegrated Weissenberg photographs taken with Zrfiltered Mo-radiation.

The dimensions of the crystal used for the determination of the intensities k0l were: 0.06 (rotation axis) $\times 0.06 \times 0.16$ mm. Because of the relatively large dimensions of the cross section perpendicular to the rotation axis and the relatively large linear absorption coefficient $\mu = 70$ cm.⁻¹, a correction for absorption was applied. For the reflections hk0 the absorption correction was neglected, since these reflections were obtained from a crystal with a cross section of 0.04×0.04 mm.² perpendicular to the rotation axis. Table 1. Experimental and calculated structure factors for $ISbCl_8$

				-			-				
h0l	$ F_o $	$ F_c $	α	h0l	Fo	$ F_c $	α	h0l	$ F_{o} $	$ F_c $	α
100	162	176	0	308	26	97	79	4017	- 28	2	57
100	100	100	100	400	01	07	946	5017	20	==	165
200	168	168	180	408	81	87	340	5,0,17	57	55	105
300	72	64	180	508	57	48	358	6,0,17	35	35	113
400	172	175	0	608	33	37	355				
500	107	97	0	708	44	45	3	1.0.18	59	68	228
600	61	59	180	808	81	0.8	258	2018	81	80	202
500	01	02	100	000	01	30	300	2,0,10	01	80	203
700	35	32	0					3,0,18	37	30	157
800	63	70	0	109	<18	16	250	4,0,18	76	66	85
				209	55	61	322	5.0.18	< 34	30	184
101	99	95	905	200	19	24	259	6018	79	74	001
101	33	30	290	303	40	54	1-0	0,0,10	12	11	107
201	30	29	346	409	68	56	190	7,0,18	41	40	197
301	85	74	344	509	83	84	146				
401	28	28	165	609	39	34	177	1.0.19	118	125	95
501	80	88	160					2019	30	37	109
001	55	50	100	1 0 10	50	F 4	100	2,0,10	40	07	100
601	55	54	115	1,0,10	- 59	04	190	3,0,19	40	30	000
701	50	43	322	2,0,10	166	164	192	4,0,19	35	30	308
				3,0,10	100	110	139	5,0,19	59	59	143
102	113	108	210	4.0.10	80	90	90				
000	150	151	906	5 0 10	- 19	10	176	0.0.90	- 99	90	44
202	150	151	200	5,0,10	< 12	10	170	0,0,20	< 20	20	44
302	100	96	126	6,0,10	107	118	214	1,0,20	30	40	325
402	111	117	81	7,0,10	66	68	224	2,0,20	70	71	340
502	42	40	159					3.0.20	63	56	342
609	190	117	940	1011	196	194	107	4 0 20	50	59	20
002	120	117	240	1,0,11	120	124	107	4,0,20	50	04	20
702	80	78	204	2,0,11	131	129	48	5,0,20	39	30	36
				3,0,11	107	113	305	1			
103	185	229	83	4 0 11	50	50	229	1021	79	71	98
000	200	220	010	5011	69	=0	170	9,0,01	61	=0	146
203	03	96	210	5,0,11	03	50	170	2,0,21	01	00	140
303	131	125	298	6,0,11	26	22	49	3,0,21	78	78	259
403	78	74	259	7,0,11	57	54	350	4,0,21	46	41	318
503	107	105	140	1				5 0 21	30	37	91
000	107	100	100	0.0.10	07	=0	154	0,0,21	00	57	21
603	74	63	180	0,0,12	87	12	154		_		
703	72	66	289	1,0,12	33	37	107	1,0,22	52	50	180
803	39	42	39	2.0.12	50	43	18	2.0.22	32	40	158
			-	3 0 12	106	119	357	3 0 22	57	60	211
004	50	40	11	4 0 10	100	112	950	4 0 99	=7	50	211
004	96	42	11	4,0,12	89	89	352	4,0,22	57	53	266
104	70	64	0	5,0,12	62	72	338				
204	144	145	338	6.0.12	30	27	59	1.0.23	33	27	312
201	197	199	000	0,0,1	00	2.		9,0,99	44	26	949
304	127	122	0					2,0,23	44	30	242
404	100	96	2	1,0,13	146	149	95	3,0,23	44	39	233
504	63	57	40	2,0,13	$<\!23$	16	6	4,0,23	< 32	26	89
604	61	48	276	3 0 13	74	74	234	5 0 23	35	39	30
004	. 10	14	210	4 0 19	00	01 01	201	0,0,20	00	02	00
704	< 12	14	Z	4,0,13	ZZ	31	280				
804	40	34	64	5,0,13	96	96	59	0,0,24	87	74	324
				6.0.13	39	33	345	i 1.0.24	72	69	346
105	174	106	01	7013	55	56	949	2 0 24	~ 32	10	22
100	171	100	105	1,0,10	00	00	210	2,0,24	< 0 <u>2</u>	10	105
205	203	222	135			_		3,0,24	33	10	107
305	133	133	235	1,0,14	42	35	104	4,0,24	39	37	347
405	55	42	303	2.0.14	124	130	160				
505	65	67	11	3 0 14	76	78	222	1025	< 32	17	295
000	00	07	100	4014	60	10	041	1,0,20	. 02	41	200
605	39	31	129	4,0,14	08	80	Z41	2,0,25	< 32	41	324
705	63	60	217	5,0,14	35	39	195	3,0,25	< 32	18	319
				6,0,14	83	84	119	4,0,25	< 32	32	197
106	112	113	145	7.0.14	44	48	154	. ,			
200	144	140	161	.,.,.		10	101	10.96	97	95	109
200	144	140	101					1,0,20	31	30	162
306	118	108	198	1,0,15	28	27	35	2,0,26	65	60	195
406	112	110	268	2,0,15	$<\!23$	7	117	3,0,26	35	36	134
506	< 17	8	136	3 0 15	52	48	173	4 0 26	35	38	45
000			100	010110		10	110	10,40	00	00	10
606	94	104	147	4,0,15	$<\!28$	41	22				
706	59	57	127	5,0,15	85	87	41	1.0.27	35	32	123
	-	-		6015	30	48	56	2 0 27	33	37	27
107	=0	=0	905	0,0,10	00	10	00	9.0,21			01 60.4
107	10	10	200	0.0.00		0.00	^	3,0,21	91 G	53	304
207	135	132	236	0,0,16	290	329	0	0.0.00	~-		• •
307	96	96	230	1,0,16	70	59	345	0,0,28	37	52	16
407	24	13	95	2 0 16	120	124	174	1,0,29	54	46	101
507	70	70	40	9010	~ 00		100	0.0.32	89	82	0
007	19	19	41U	3,0,10	~ 29	20	190	,,,,,		-0	· ·
607	<28	17	64	4,0,16	110	110	8	1			
707	37	38	193	5,0,16	74	88	358				
				1							
008	96	99	965	1017	22	24	907				
100	40	20	200	1,0,17	00 	04	401				
108	133	136	9	2,0,17	57	47	340				
208	40	41	164	3,0,17	33	43	347				

110	1771	77	1 110	1767	T	1	h h 0	1177	F	hk0	\mathbf{R} .	F.
nk0	[I' 0]	r _c	110	10	1' c	1	$n\kappa 0$	1 01	r c	111.0	1- 01	- c
100	166	176	220	81	-71		440	18	4	710	35	39
200	166	-168	230	122	-108		450	61	43	720	70	-74
300	56	-64	240	26	-10		460	24	21	730	22	-13
400	168	175	250	50	-58		470	85	89	740	24	25
500	89	97	260	69	- 73		480	35	32	750	< 12	-10
600	52	- 52	270	131	- 139					760	44	-60
700	30	39	280	43	-42		510	54	-58	770	26	-28
800	61	70	200	10	12		520	91	-87	780	28	33
000	20	10	310	41	39	1	530	52	47			
1000	30	19	320	44	49	- 1	540	76	72	810	98	96
10,0,0	30	- 31	330	67	-63		550	52	39	820	< 12	3
			340	61	- 65	ł	560	< 10	0	830	31	- 24
110	28	26	350	~ 10	-7	1	570	28	19	840	21	95
120	135	-136	260	10	- 94		0.0			040	01	20
130	118	-112	300	20	- 24		610	85	- 88	850	65	52
140	48	48	370	22	-14		690	57	66	860	< 12	10
140	40	40	380	28	19		620	57	-00	870	< 12	-2
150	85	79	390	43	44		630	44	50	880	31	30
160	26	-20	000	10		1	640	59	68	000	51	00
170	67	-60	410	137	127	1	650	41	-44	950	30	45
			420	18	28		660	91	- 99	550	00	40
210	26	17	430	30	37		670	33	-40	10,1,0	3 5	34

Determination of the structure

Because of the tetragonal symmetry the positions of the heavy atoms could be obtained from one, [010], Patterson synthesis, especially from the Harker maxima at $z=\frac{1}{4}$ and $z=\frac{1}{2}$. Because of the small difference in atomic number, no distinction could be made between Sb and I.

To find the x- and y-coordinates of the Cl atoms Fourier syntheses of the centrosymmetric [001] projection were computed. In the first of these syntheses the signs of 47 structure factors could be determined with reasonable certainty from the contribution of the heavy atoms. After the third synthesis further refinement of this projection was practically impossible because of overlap. Of the eight independent Cl atoms seven could be located.

Next a Fourier synthesis of the non-centrosymmetric [010] projection was prepared. Approximate values of the phase angles of the structure factors were calculated from the positions of the heavy atoms. About half of the available structure amplitudes were not used for this synthesis because the calculated phase angles were too uncertain.

As was to be expected the resulting synthesis showed, apart from the high maxima due to the heavy atoms, twice as many low maxima as Cl atoms to be located. With the aid of the x- and y-coordinates from the [001] Fourier synthesis, most of these maxima could be divided into 'real' and 'false' ones. It was found that one half of the heavy atoms was octahedrally surrounded by six Cl atoms. These units were assumed to be $SbCl_6^-$ ions. Furthermore approximately rectangular units ICl_2^+ could be distinguished.

Refinement of the coordinates

First the [010] projection was refined by means of four successive Fourier and $(F_o - F_c)$ syntheses; the coordinates were changed according to the doubleshift rule. The shifts in the z-direction for atoms related by the tetragonal screw axis were averaged. For the heavy atoms an anisotropic temperature factor of the form

$$\exp\left\{-\left[B_{xy}+\left(B_z-B_{xy}\right)\cos^2\varphi\right]\sin^2\theta/\lambda^2\right\}$$

was introduced in the last stage of the refinement. In this expression φ is the angle between the normal of the reflecting plane and the z-axis. Values for B_{xy} and B_z were obtained by comparing F_o and F_c in two groups of reflections h0l with values of $\cos^2 \varphi$ between 0 and $\frac{1}{4}$, and between $\frac{3}{4}$ and 1 respectively; only reflections with a relatively small contribution of the Cl atoms were used. A separate isotropic temperature coefficient for the Cl atoms was found by trial.

After the last calculation of the structure factors, the disagreement index

$$R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

amounted to 8.1%. In Table 1 the final values of F_c

 Table 2. Final atomic coordinates and temperature
 coefficients for ISbCl₈

Coordinates						
	x	y	\boldsymbol{z}			
I	0.754	0.848	0.1225			
\mathbf{Sb}	0.239	0.001	0.0000			
Cl ₁	0.781	0.579	0.066			
Cl,	0.570	0.688	0.186			
Cl	0.724	0.182	0.190			
Cl	0.942	0.110	0.040			
Cl ₅	0.076	0.519	0.204			
Cl	0.263	0.756	0.065			
Cl,	0.180	0.057	0.193			
Cls	0.400	0.214	0.058			

Temperature coefficients

Sb,I: $B_{xy} = 1.6$ = 2.6 B_z \tilde{B} Cl: = 3.0 are compared with F_o . The final coordinates and temperature coefficients are listed in Table 2 and in Fig. 1 the corresponding F_o synthesis is shown.

30. CI ())Cl8

Fig. 1. ISbCl₈; Fourier synthesis of the [010] projection. Contourlines are drawn at 5, 10, 15 ... e. A^{-2} in the maxima of the Cl atoms and at 5, 10, 20, 30 ... e. $Å^{-2}$ in the maxima of the Sb and I atoms.

Also the structure factors F_{hk0} were calculated from the final coordinates. The disagreement index, which amounted to 18% when the refinement of the [001] projection was stopped, decreased to 10.5%.

Accuracy

The standard deviations in the atomic coordinates were estimated from the $(F_o - F_c)$ values by the method of Cruickshank (1949). Because of the lack of a centre of symmetry in the [010] projection the values obtained from the structure factors F_{h0l} were doubled (Cruickshank, 1950). The following standard deviations in the atomic coordinates q, interatomic distances l and bond angles φ were found:

Sb and I	$\sigma(q) = 0.01$ Å
Cl	$\sigma(q) = 0.03_5$
Sb-Cl and I-Cl	$\sigma(l) = 0.04$
ClCl	$\sigma(l) = 0.05$
\angle Cl–Sb–Cl and \angle Cl–	I-Cl $\sigma(\varphi) = 1.4^{\circ}$.

IAICI₆

IAlCl₆ was prepared by heating equivalent amounts of ICl₃ and AlCl₃ in chloroform or carbontetrachloride as a solvent to about 100 °C. in a sealed tube. After cooling, a crust of red IAlCl₆ crystals had formed in the lower part of the tube. X-ray photographs were made of fragments of these crystals. Because of the very rapid decomposition of IAlCl₆ in the open air these fragments were kept in thin-walled pyrex tubes. The photographs showed monoclinic symmetry.

Unit cell:

$$a = 6.92 \pm 0.03, \ b = 11.02 \pm 0.05, \ c = 6.11 \pm 0.03 \text{ Å};$$

 $\beta = 99.1^{\circ}.$

Reflections 0k0 were absent for k=2n+1. The space group $P2_1$ was accepted because $P2_1/m$ was not in agreement with the [100] Patterson synthesis. Density, calculated from the volume of the unit cell, assuming two IAlCl₆ units per cell: 2.64 g.cm.⁻³. Observed density 2.4 ± 0.3 g.cm.⁻³.

Intensities

Integrated and non-integrated Weissenberg photographs of the reflections 0kl were made from a needlelike crystal fragment for which the absorption of the employed Mo $K\alpha$ -radiation could be neglected. The same crystal was used to obtain the reflections h0l on precession photographs.

Precession photographs were also made of the reflections hk0. In this case a thin crystal slab was used which was irradiated transversely, so that the absorption was about equal for all reflections and could be neglected.

In this way the intensities of 75 reflections hk0, 64 reflections h0l and 89 reflections 0kl were obtained. The intensities from the precession photographs were corrected for Lorentz- and polarisation factors in the way described by Waser (1951).

Determination of the structure

The position of the I atom was found from Patterson syntheses of two of the main projections; approximate coordinates of the light atoms were obtained by the heavy-atom technique. This method was first applied to the centrosymmetric [010] projection, then to the non-centrosymmetric [001] projection in which the light-atom maxima have ghosts at centrosymmetric positions. It appeared that a structure consisting of tetrahedral $AlCl_4^-$ ions and rectangular ICl_2^+ ions fitted the Fourier maps.

Refinement of the coordinates

At first the three main projections were refined separately by successive Fourier syntheses. The coordinates in the non-centrosymmetric projections were changed according to the double-shift rule. As however the separate refinement appeared to be difficult because of overlap of two or more atoms in each

Table 3.	Final atomic	coordinates	and	temperature
	coefficie	nts for IAIC	l6	-

Coordinates	

	\boldsymbol{x}	y	z
I	0.191	0.2500	0.007
Al	0.522	0.093	0.595
Cl ₁	0.993	0.211	0.266
Cl_2	0.982	0.375	0.792
Cl_3	0.808	0.045	0.694
Cl ₄	0.484	0.091	0.230
Cl ₅	0.672	0.467	0.309
CL	0.457	0.269	0.691

Temperature coefficients

I, A1:
$$B = 3.0$$

C1: $B = 4.0$

C. G. VONK AND E. H. WIEBENGA

Table 4. Experimental and calculated structure factors for IAlCl₆

hkl	$ F_o $	$ F_c $	α	hkl	$ F_o $	$ F_c $	α	hkl	$ F_{o} $	$ F_c $	α
100	12	12	0	480	16	13	301	055	10	12	1
200	18	10	õ	580	99	95	001	056	10	12	96
200	70	60	180	000	20	20	22	000	10	12	20
400	51	55	180	100	95	94	5	0.61	40	4.6	170
400 #00	01 47	35	0	190	20	24	0 00	001	48	40	170
000	41	47	0	290	27	25	23	062	38	41	201
600	56	55	0	390	16	11	211	063	50	47	191
700	16	14	180	490	32	31	180	064	40	38	164
800	16	17	180					065	28	31	175
				0,10,0	24	32	216	066	12	14	191
110	72	78	0	1,10,0	22	20	140	067	17	14	185
210	51	47	320	2,10,0	39	41	345	068	10	9	174
310	26	23	161	3,10,0	23	22	1				
410	73	78	157					071	16	16	313
510	<10	8	211	1,11,0	27	28	174	072	15	16	173
610	19	14	280	2,11,0	<15	20	173	073	12	16	88
710	16	19	5	3.11.0	< 15	7	3	074	13	11	240
				4.11.0	19	18	329	075	8	9	211
020	78	80	161	-,,-					-	-	
120	63	65	143	0 12 0	18	14	20	081	45	45	6
220	16	18	58	1 12 0	- 15	13	230	082	36	36	19
320	66	66	325	2 1 2 0	15	14	144	083	97	96	6
420	96	99	125	2,12,0	10	17	106	084	21	20	940
520	20	20	100	3,12,0	20	28	190	004	21	21	045
020	32	32	191	1 19 0	10	17	950	080	23	20	340
620	14	14	151	1,13,0	16	17	358	086	19	18	25
				2,13,0	16	15	21	087	< 8	9	1
130	100	111	178	0,14,0	16	17	173	088	11	7	343
230	53	50	214								
330	21	21	16	001	57	53	0	091	32	29	114
430	63	63	10	002	34	30	180	092	8	6	216
530	$<\!12$	6	333	003	95	96	0	093	23	27	319
630	27	24	201	004	77	71	0	094	12	10	57
730	30	32	178	005	31	28	0				
				006	16	22	0	0,10,1	33	31	174
040	81	87	16	007	23	22	0	0,10,2	25	28	160
140	43	44	300	008	14	8	0	0,10,3	31	30	183
240	74	77	172					0.10.4	22	17	182
340	67	71	231	011	< 3	10	225	0.10.5		8	193
440	16	16	131	012	52	55	66	0 10 6	18	18	184
540	47	42	351	013	24	22	255	0 10 7	ĩĩ	10	175
640	14	16	9	014	21	26	200	0,10,1		10	110
740	<15 <15	10	200	i 015	10	20	201	0 19 1	90	20	254
940	~ 10	14	109	015	19	14	64	0,12,1	20	20	950
040	20	20	100	010	11	14	04	0,12,2	20	12	303
150	49	20	r	190	109	06	100	0,12,3	10	10	950
950	44	00 90	1	021	103	90	190	0,12,4	12	10	300
200	38	38	348	022	72	73	182	0,12,5	16	15	1
300	12	13	230	023	58	55	171	1		• •	
450	46	46	174	024	51	53	178	0,14,1	16	12	170
550	<14	12	301	025	31	33	176	0,14,2	14	12	177
650	16	16	349	026	27	25	206	0,14,3	14	16	209
				027	20	19	169	0,14,4	10	8	171
060	90	94	172	028	14	14	167				
160	57	56	80					0,16,0	7	4	47
260	12	10	46	031	75	70	265	0,16,1	11	12	359
360	67	70	10	032	16	15	97	0,16,2	11	12	350
460	25	25	151	033	36	40	123	, ,			
560	37	35	129	034	17	16	286	$10\overline{6}$	27	19	0
660	23	22	167	035	10	12	194	$10\overline{5}$	24	23	0
760	15	14	24	036	10	12	149	$10\bar{4}$	30	35	Ō
								103	14	13	Ō
170	66	68	172	041	60	60	351	102	33	31	Õ
270	28	25	180	042	54	51	357	101	66	65	ŏ
370	52	20	18	042	21 21	26	1	101	51	55	0
470	20	<u>40</u>	255	040	40	44	251	101	∠ 10	10	0
570	37 14	+U 1 K	99	044	+U 11	**	65	102	~ 14	5	100
670	14	10	40 177	040	90 11	/ 91	ບວ ງະວ	103	< 14 0"	0	180
770	23	11	1/1	040	3Z	31	000 050	104	25	20	U
110	23	21	103	047	21	24	999	207	40		100
080	47	۲ ٦	994	051	0	10	204	200	40	38	180
100	47	10	334	951	8	10	524 917	205	< 10	1	180
100	18	18	30	952	30	32	315	204	< 10	9	100
200	23	25	228	053	18	17	101	203	68	69	180
380	26	27	201	054	<7	9	95	202	106	112	180

Fig. 2. IAlCl₆; Fourier syntheses of (a) [100], (b) [001] and (c) [010] projections. Contourlines are drawn at 5 (broken), 10, 15, 20 ... e.Å⁻² in the maxima of the Cl atoms and at 5 (broken), 10, 20, 30 ... e.Å⁻² in the maxima of the I atom.

projection, the final coordinates were determined by simultaneous refinement of the three projections. This means that one set of atomic coordinates was used for the calculation of the structure factors for all three projections, after which the corresponding shifts, following from the $(F_o - F_c)$ syntheses, were averaged.

After the second simultaneous structure factor calculation the shifts derived from the $(F_o - F_c)$ syntheses were contradictory in many cases and the refinement was not continued further. The disagreement indices for the three sets of structure factors were 6.2, 7.3 and 8.1% for the [001], [010] and [100] projection respectively. The temperature coefficients and the atomic coordinates which were used in the last structure-factor calculation are listed in Table 3, and in Fig. 2 the final Fourier syntheses of the three projections are given. Table 4 shows the observed and calculated structure factors.

Accuracy

The standard deviations of the coordinates of the Cl and Al atoms calculated for the different projections yielded somewhat different values. Of these the values obtained for the [100] projection were the highest. These were also considered to be the most reliable, since in this projection overlap of different atoms occurred only to a minor degree, whereas the number of reflections used for the Fourier syntheses of this projection was the largest. On the basis of these values the following standard deviations in the coordinates, interatomic distances and bond angles were finally assumed:

Ι	$\sigma(q) = 0.006 \text{ Å}$	L
Cl	$\sigma(q) = 0.03_5$	
Al	$\sigma(q) = 0.045$	
I–Cl	$\sigma(\bar{l}) = 0.04$	
Al–Cl	$\sigma(l) = 0.06$	
ClCl	$\sigma(l) = 0.05$	
∠ Cl–I–Cl	$\sigma(\varphi) = 1.4^{\circ}$	
∠ Cl–Al–Cl	$\sigma(\varphi) = 2 \cdot 4^{\circ}$	

Discussion of the structures

The structure of $ISbCl_8$ is shown in Fig. 3. It can be considered as consisting of layers of Cl atoms between

Fig. 3. Structure of ISbCl₈ as viewed along [010].

which the Sb and I atoms are located. Perpendicular to the tetragonal screw axes there are two crystallographically different sets of Cl layers: those at $z = \frac{1}{16}c$, $\frac{5}{16}c$, etc. and those at $z = \frac{3}{16}c$, $\frac{7}{16}c$ etc. Layers of the same set are identical because of the tetragonal screw axes. Though there are no symmetry relations between the two sets of layers they are still almost identical. The mean difference of the positions of the Cl atoms with respect to each other in the two kinds of layers is only 0·16 Å. The arrangement of the Cl atoms in the layers is shown in Fig. 4.

Fig. 4. Packing of Cl atoms in a layer perpendicular to [010] in ISbCl₈. The I atoms just above and the Sb atoms just below the layer are indicated by small full and broken circles respectively.

Fig. 5. Main bond lengths and bond angles in ISbCl_s,

bond angles							
Cl ₃ -Sb-Cl ₄	81.6°	Cl ₄ -Sb-Cl ₆	91 ·3 °	Cl ₅ -Sb-Cl ₇	93·1°		
Cl ₃ -Sb-Cl ₅	91.0	Cl ₄ -Sb-Cl ₇	86.5	Cl ₅ -Sb-Cl ₈	91.6		
Cl ₃ -Sb-Cl ₇	88.9	Cl ₄ -Sb-Cl ₈	88·3	Cl ₆ -Sb-Cl ₇	92.4		
Cl ₃ -Sb-Cl ₈	86.5	Cl ₅ -Sb-Cl ₆	95.2	Cl ₆ -Sb-Cl ₈	91.5		

At first sight the structure of ISbCl₈ can be considered as an ionic structure consisting of ICl_2^+ ions which are almost rectangular, and $SbCl_6^-$ ions with a distorted octahedrical configuration. The rectangular shape of the ICl_2^+ ions is to be expected from the electronic configuration of the I⁺ ions: the two unpaired 5p electrons of this ion may be used for the bonds with the Cl atoms.

The main interatomic distances and bond angles are indicated in Fig. 5. From an examination of these distances it follows that there is a special interaction between the ICl_2^+ and the $SbCl_6^-$ ions. The distances $I-Cl'_3$ and $I-Cl_4$ are larger than the I-Cl distances in the ICl_2^+ ions, but appreciably shorter than the sum of the van der Waals radii (3.9 Å). Apparently weak bonds are present between the ICl_2^+ and $SbCl_6^-$ ions, by which these ions are linked to chains parallel to the z-axis of the crystal. In Fig. 5 these bonds are indicated by broken lines.

It further follows from Fig. 5 that the lengths of the bonds Sb-Cl₃ and Sb-Cl₄ are larger than those of the other bonds in the SbCl₆ ion. From a χ^2 -test (Cruick-shank & Robertson, 1953) it was concluded that these differences are significant.

Finally it is noticeable that the Cl–I–Cl angles in the group of atoms I, Cl₁, Cl₂, Cl₃' and Cl₄ are all about 90° and that this group is almost planar. Using the method of the least squares (with different weights for the I and Cl atoms) the deviations from coplanarity for the atoms of the group were found to be 0.02, -0.18, 0.01, 0.02 and -0.13 Å respectively. Hence, apart from the difference in the I–Cl distances, the configuration of this group is very similar to that of the ICl₄⁻ ion, in which the Cl atoms are located at the corners of a square around the I atom (Mooney, 1938).

These observations indicate that the structure of $ISbCl_8$ is intermediate between the structures $[ICl_2]^+[SbCl_6]^-$ and $[ICl_4]^-[SbCl_4]^+$. In the terminology of the valence-bond method the structure may be represented as a mesomerism according to the scheme

$$[ICl_2]^+[SbCl_6]^- \longleftrightarrow [ICl_4]^-[SbCl_4]^+$$

in which the first predominates.

The structure of IAlCl₆, which is shown in Fig. 6, is similar to the structure of ISbCl₈ in many respects.

Fig. 6. Structure of IAlCl₆ as viewed along [100].

In this compound there are Cl layers parallel to (001). Because of the diad screw axis the layers are however all identical in this case.

Fig. 7. Main bond lengths and bond angles in IAlCl₆.

. Bond angles							
Cl ₄ -Al-Cl ₆	106·8°	Cl ₆ -Al-Cl ₃	113·4°				
Cl ₄ -Al-Cl ₃	104.5	Cl ₆ -Al-Cl ₅	111.3				
ClAlCl_	107.4	ClAl-Cl_	112.5				

As can be seen from Fig. 7, in which the main interatomic distances and bond angles are given, the structure $[ICl_2]^+[AlCl_4]^-$ prevails in IAlCl₆. The ICl_2^+ ions have the same configuration as in ISbCl₈, whereas the AlCl₄ ions have an approximately tetrahedral configuration.

The distances I–Cl₄ and I–Cl₆ are about the same as the corresponding distances in ISbCl₈. Apparently the ICl₂⁺ and AlCl₄⁻ ions are linked by weak bonds to chains parallel to [001]. Again the shape of the group I, Cl₁, Cl₂, Cl₄, Cl₆ is similar to that of an ICl₄⁻ ion. The deviations of the atoms from the nearest plane are 0.004, -0.09, -0.03, -0.03 and 0.07 Å respectively.

Therefore the structure of $IAlCl_6$ may be represented by a resonance between the structures

 $[ICl_2]^+[AlCl_4]^-$ and $[ICl_4]^-[AlCl_2]^+$

in which the first predominates.

The extension of the bonds $Al-Cl_4$ and $Al-Cl_6$ which is to be expected from this resonance, is difficult to observe in this case because of the high standard deviation which had to be assigned to the Al-Cl distances. Actually these bonds are found to be somewhat longer than the other two Al–Cl bonds in the $AlCl_4$ ion, but the differences are not significant.

A similar mesomerism as assumed in $ISbCl_8$ and $IAlCl_6$ was used by Boswijk & Wiebenga (1954) to describe the structure of iodine trichloride. The structure of the flat I_2Cl_6 molecules of which this compound consists was represented by a mesomerism between the structures:

$$\begin{bmatrix} Cl\\ Cl \end{bmatrix}^{+} \begin{bmatrix} Cl\\ Cl \end{bmatrix} I \underbrace{ Cl}^{Cl}_{Cl} \end{bmatrix}^{-} \text{ and } \begin{bmatrix} Cl\\ Cl \end{bmatrix} I \underbrace{ Cl}^{Cl}_{Cl} \end{bmatrix}^{-} \begin{bmatrix} I \underbrace{ Cl}^{Cl}_{Cl} \end{bmatrix}^{+}$$

In contradistinction to the case of ISbCl₈ and IAlCl₆ the two structures will here contribute to the same extent, which explains that the distance between the I atoms and the central Cl atoms in I₂Cl₆ (2·70 Å) is smaller than the corresponding distances I-Cl₃, I-Cl₄ in ISbCl₈ and I-Cl₄, I-Cl₆ in IAlCl₆ (mean value 2·9 Å).

We wish to thank Theodorus Niemeyer N.V. Groningen for kindly putting their IBM machines at our disposal, and Mr H. Schürer for his assistance with the computational work. The Netherlands Organisation for the Advancement of Pure Research (Z.W.O.) supported the work indirectly.

References

- Boswijk, K. H. & Wiebenga, E. H. (1954). Acta Cryst. 7, 417.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1950). Acta Cryst. 3, 72.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- MOONEY, R. C. L. (1938). Z. Kristallogr. 98, 377.
- VONK, C. G. (1959). Rec. Trav. Chim. Pays-Bas. To be published.
- WASER, J. (1951). Rev. Sci. Instrum. 22, 567.
- WOOLF, A. A. & EMELÉUS, H. J. (1949). J. Chem. Soc. p. 1865.